Joint multi-person detection and tracking from overlapping cameras
نویسندگان
چکیده
We present a system to track the positions of multiple persons in a scene from overlapping cameras. The distinguishing aspect of our method is a novel, two-step approach that jointly estimates person position and track assignment. The proposed approach keeps solving the assignment problem tractable, while taking into account how different assignments influence feature measurement. In a hypothesis generation stage, the similarity between a person at a particular position and an active track is based on a subset of cues (appearance, motion) that are guaranteed observable in the camera views. This allows for efficient computation of the K-best joint estimates for person position and track assignment under an approximation of the likelihood function. In a subsequent hypothesis verification stage, the known person positions associated with these K-best solutions are used to define a larger set of actually visible cues, which enables a re-ranking of the found assignments using the full likelihood function. We demonstrate that our system outperforms the state-of-the-art on four challenging multi-person datasets (indoor and outdoor), involving 3–5 overlapping cameras and up to 23 persons simultaneously. Two of these datasets are novel: we make the associated images and annotations public to facilitate
منابع مشابه
People Re-identification in Non-overlapping Field-of-views using Cumulative Brightness Transform Function and Body Segments in Different Color Spaces
Non-overlapping field-of-view (FOV) cameras are used in surveillance system to cover a wider area. Tracking in such systems is generally performed in two distinct steps. In the first step, people are identified and tracked in the FOV of a single camera. In the second step, re-identification of the people is carried out to track them in the whole area under surveillance. Various conventional fea...
متن کاملA Joint System for Single-Person 2D-Face and 3D-Head Tracking in CHIL Seminars
We present the IBM systems submitted and evaluated within the CLEAR’06 evaluation campaign for the tasks of single person visual 3D tracking (localization) and 2D face tracking on CHIL seminar data. The two systems are significantly inter-connected to justify their presentation within a single paper as a joint vision system for single person 2D-face and 3D-head tracking, suitable for smart room...
متن کاملExternal Cameras and a Mobile Robot for Enhanced Multi-person Tracking
In this paper, we present a cooperative multi-person tracking system between external fixed-view wall mounted cameras and a mobile robot. The proposed system fuses visual detections from the external cameras and laser based detections from a mobile robot, in a centralized manner, employing a “tracking-by-detection” approach within a Particle Filtering scheme. The enhanced multi-person tracker’s...
متن کاملMulti-Target Tracking in Multiple Non-Overlapping Cameras using Constrained Dominant Sets
In this paper, a unified three-layer hierarchical approach for solving tracking problems in multiple non-overlapping cameras is proposed. Given a video and a set of detections (obtained by any person detector), we first solve within-camera tracking employing the first two layers of our framework and, then, in the third layer, we solve across-camera tracking by merging tracks of the same person ...
متن کاملA Comparative Study on Multi-person Tracking Using Overlapping Cameras
We present a comparative study for tracking multiple persons using cameras with overlapping views. The evaluated methods consist of two batch mode trackers (Berclaz et al, 2011, Ben-Shitrit et al, 2011) and one recursive tracker (Liem and Gavrila, 2011), which integrate appearance cues and temporal information differently. We also added our own improved version of the recursive tracker. Further...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Vision and Image Understanding
دوره 128 شماره
صفحات -
تاریخ انتشار 2014